9 research outputs found

    Neuronal oscillations, information dynamics, and behaviour: an evolutionary robotics study

    Get PDF
    Oscillatory neural activity is closely related to cognition and behaviour, with synchronisation mechanisms playing a key role in the integration and functional organization of different cortical areas. Nevertheless, its informational content and relationship with behaviour - and hence cognition - are still to be fully understood. This thesis is concerned with better understanding the role of neuronal oscillations and information dynamics towards the generation of embodied cognitive behaviours and with investigating the efficacy of such systems as practical robot controllers. To this end, we develop a novel model based on the Kuramoto model of coupled phase oscillators and perform three minimally cognitive evolutionary robotics experiments. The analyses focus both on a behavioural level description, investigating the robot’s trajectories, and on a mechanism level description, exploring the variables’ dynamics and the information transfer properties within and between the agent’s body and the environment. The first experiment demonstrates that in an active categorical perception task under normal and inverted vision, networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally, and to adapt to different behavioural conditions. The second experiment relates assembly constitution and phase reorganisation dynamics to performance in supervised and unsupervised learning tasks. We demonstrate that assembly dynamics facilitate the evolutionary process, can account for varying degrees of stimuli modulation of the sensorimotor interactions, and can contribute to solving different tasks leaving aside other plasticity mechanisms. The third experiment explores an associative learning task considering a more realistic connectivity pattern between neurons. We demonstrate that networks with travelling waves as a default solution perform poorly compared to networks that are normally synchronised in the absence of stimuli. Overall, this thesis shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, produce an asymmetric flow of information and can generate minimally cognitive embodied behaviours

    On cognition, adaptation and homeostasis : analysis and synthesis of bio-inspired computational tools applied to robot autonomous navigation

    Get PDF
    Orientadores: Fernando Jose Von Zuben, Patricia Amancio VargasDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Este trabalho tem como objetivos principais estudar, desenvolver e aplicar duas ferramentas computacionais bio-inspiradas em navegação autônoma de robôs. A primeira delas é representada pelos Sistemas Classificadores com Aprendizado, sendo que utilizou-se uma versão da proposta original, baseada em energia, e uma versão baseada em precisão. Adicionalmente, apresenta-se uma análise do processo de evolução das regras de inferência e da população final obtida. A segunda ferramenta trata de um modelo denominado sistema homeostático artificial evolutivo, composto por duas redes neurais artificiais recorrentes do tipo NSGasNets e um sistema endócrino artificial. O ajuste dos parâmetros do sistema é feito por meio de evolução, reduzindo-se a necessidade de codificação e parametrização a priori. São feitas análises de suas peculiaridades e de sua capacidade de adaptação. A motivação das duas propostas está no emprego conjunto de evolução e aprendizado, etapas consideradas fundamentais para a síntese de sistemas complexos adaptativos e modelagem computacional de processos cognitivos. Os experimentos visando validar as propostas envolvem simulação computacional em ambientes virtuais e implementações em um robô real do tipo Khepera II.Abstract: The objectives of this work are to study, develop and apply two bio-inspired computational tools in robot autonomous navigation. The first tool is represented by Learning Classifier Systems, using the strength-based and the accuracy-based models. Additionally, the rule evolution mechanisms and the final evolved populations are analyzed. The second tool is a model called evolutionary artificial homeostatic system, composed of two NSGasNet recurrent artificial neural networks and an artificial endocrine system. The parameters adjustment is made by means of evolution, reducing the necessity of a priori coding and parametrization. Analysis of the system's peculiarities and its adaptation capability are made. The motivation of both proposals is on the concurrent use of evolution and learning, steps considered fundamental for the synthesis of complex adaptive systems and the computational modeling of cognitive processes. The experiments, which aim to validate both proposals, involve computational simulation in virtual environments and implementations on real Khepera II robots.MestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    Neurosciences and Wireless Networks: The Potential of Brain-Type Communications and Their Applications

    Get PDF
    This paper presents the first comprehensive tutorial on a promising research field located at the frontier of two well-established domains, neurosciences and wireless communications, motivated by the ongoing efforts to define the Sixth Generation of Mobile Networks (6G). In particular, this tutorial first provides a novel integrative approach that bridges the gap between these two seemingly disparate fields. Then, we present the state-of-the-art and key challenges of these two topics. In particular, we propose a novel systematization that divides the contributions into two groups, one focused on what neurosciences will offer to future wireless technologies in terms of new applications and systems architecture (Neurosciences for Wireless Networks), and the other on how wireless communication theory and next-generation wireless systems can provide new ways to study the brain (Wireless Networks for Neurosciences). For the first group, we explain concretely how current scientific understanding of the brain would enable new applications within the context of a new type of service that we dub brain-type communications and that has more stringent requirements than human- and machine-type communication. In this regard, we expose the key requirements of brain-type communication services and discuss how future wireless networks can be equipped to deal with such services. Meanwhile, for the second group, we thoroughly explore modern communication systems paradigms, including Internet of Bio-Nano Things and wireless-integrated brain-machine interfaces, in addition to highlighting how complex systems tools can help bridging the upcoming advances of wireless technologies and applications of neurosciences. Brain-controlled vehicles are then presented as our case study to demonstrate for both groups the potential created by the convergence of neurosciences and wireless communications, probably in 6G. In summary, this tutorial is expected to provide a largely missing articulation between neurosciences and wireless communications while delineating concrete ways to move forward in such an interdisciplinary endeavor

    Self-localisation in indoor environments combining learning and evolution with wireless networks

    No full text
    This work combines wireless networks (WLAN) (Wireless\ud LAN IEEE 802.11 b/g) with learning and evolution of arti\ud cial neural networks. Our main objective is to propose\ud an architecture for a self-adaptive system, addressing alternative\ud methods to the usage of GPS for self-localisation in\ud autonomous mobile robots either in indoor or outdoor environments.\ud We seek to describe alternatives and evaluation\ud methods for localisation of mobile agents using the strength\ud signal from Access Points (APs). The results show that the\ud proposed method used with autonomous mobile robots does\ud not require the use of special hardware, and hence is low\ud cost, easy to operate, and fully autonomousCNPq - INCT-SEC (processo No. 573963/2008-8 e 08/57870-9)FAPESP (processo No. 2012/22550-0)CAPES (processo No. BEX 4202-11-2
    corecore